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Abstract— This paper reverse engineers backoff-based
random-access MAC protocols in ad-hoc networks. We show
that the contention resolution algorithm in such protocols is
implicitly participating in a non-cooperative game. Each link
attempts to maximize a selfish local utility function, whose
exact shape is reverse engineered from the protocol description,
through a stochastic subgradient method in which the link
updates its persistence probability based on its transmission
success or failure. We prove that existence of a Nash equilibrium
is guaranteed in general. The minimum amount of backoff
aggressiveness needed for uniqueness of Nash equilibrium and
convergence of the best response strategy are established as a
function of user density. Convergence properties and connection
with the best response strategy are also proved for variants of
the stochastic-subgradient-based dynamics of the game. Together
with known results in reverse engineering TCP and BGP, this
paper completes the recent efforts in reverse engineering the
main protocols in layers 2-4.

Keywords: Wireless network, Ad hoc network, Medium access
control, Mathematical programming/optimization, Network utility
maximization, Game theory, Network control by pricing, Reverse
engineering.

I. INTRODUCTION

To better understand backoff-based random-access protocols
in wireless MAC (Medium Access Control), such as the BEB
(Binary Exponential Backoff) protocol in the IEEE 802.11
DCF standard, we pose the following question: are the dis-
tributed and selfish actions by each link in such protocols
in fact implicitly maximizing some local utility functions?
We answer this question by developing a non-cooperative
game model for EB (Exponential Backoff) type of MAC
protocols, reverse engineering the underlying utility function’s
form from protocol description, and establishing the existence,
uniqueness, and stability properties of Nash equilibrium.

This reverse engineering effort is different from either
imposing a particular utility maximization or game-theoretic
model (e.g., the game-theoretic model for slotted Aloha in
[12]) or performance analysis of a protocol without discov-
ering the underlying optimization process (e.g., analysis of
802.11 protocols based on Markov model [3], [19]). While
queuing-theoretic stability of contention-based MAC has been
well-studied since 1970s, reverse engineering results of MAC
protocols have not appeared before.
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Our layer 2 reverse engineering results complement the
recent work on reverse engineering layer 4 TCP, e.g., [10],
[16], and layer 3 BGP [5]. By starting with a given protocol
description and working backwards to determine the under-
lying optimization problem implicitly solved by the protocol,
much new insights on protocol performance, parameter setting,
cross-layer interactions, and design improvements can be
rigorously obtained, as illustrated through forward engineering
successes of TCP and BGP over the last few years.

For example, Internet TCP/AQM protocols in the transport
layer have recently been reverse engineered as implicitly
solving a cooperative Network Utility Maximization (NUM)
[7], [11], [13], [8] using different Lagrange multipliers or
congestion prices. Consider a communication network with
L logical links, each with a fixed capacity of cl bps, and S
sources (i.e., end users), each transmitting at a source rate of
xs bps. Each source s emits one flow, using a fixed set L(s) of
links in its path, and has an increasing, concave utility function
Us(xs). The basic NUM problem is formulated as [7]:

maximize
∑

s Us(xs)
subject to

∑
s:l∈L(s) xs ≤ cl, ∀l,

xmin ¹ x ¹ xmax.
(1)

Even though TCP/AQM protocols were first designed without
regard to global optimization, the reverse engineering model
provides a rigorous path towards understanding the equi-
librium and dynamic properties of complicated interactions
across sources and routers and valuable guidance in design
issues. In those models, the utility function of each source
depends only on its data rate that can be directly controlled
by the source itself, and there are adequate feedback from
the network. Hence, the TCP/AQM protocol can be modeled
as a distributed algorithm that converges to the globally
optimal rate allocation by implicitly solving the basic NUM
problem (1) for different utility functions and its Lagrange
dual problem.

In contrast, in the EB MAC protocol, the utility of each
link directly depends on not just its own transmission (e.g.,
persistence probability) but also transmissions of other links
due to collisions that cannot be controlled by the link itself.
Moreover, there is no explicit feedback from the network.
Hence, a non-cooperative game model is more appropriate
for the EB protocol than a global optimization model. We
show that the EB protocol can be reverse engineered through
a non-cooperative game in which each link tries to maximize,
using a stochastic subgradient formed by local information,
its own utility function in the form of expected net reward
for successful transmission. While the existence of Nash
equilibrium can be proved, neither convergence nor social
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Fig. 1. Logical topology graph of an example network.

welfare optimality is guaranteed. We then provide sufficient
conditions on user density and backoff aggressiveness that
guarantee uniqueness and stability (i.e., convergence of the
standard best response strategy) of Nash equilibrium. We also
characterize a contraction region for the expected trajectory of
the stochastic subgradient method, and show that a sequential
variant of the stochastic subgradient method is equivalent to
the best response strategy.

The rest of this paper is organized as follows. In Section II,
we provide the system model. In Section III-A, we establish
a non-cooperative game model for the EB protocol, reverse
engineer the underlying utility function, and prove the exis-
tence of Nash equilibrium. In Section III-B, we further reverse
engineer the EB protocol as a stochastic subgradient method.
We characterize the uniqueness and stability properties of Nash
equilibrium in Section III-C, and develop the relationship be-
tween the stochastic subgradient method and the best response
strategy in Section III-D. In Section IV, we provide numerical
results that illustrate the properties of the EB protocol as a
non-cooperative game, and we conclude in Section V. Most
of the proofs are presented in the Appendix.

II. SYSTEM MODEL

Consider an ad-hoc network represented by a directed graph
G(V, E), e.g., as in Figure 1, where V is the set of nodes and
E is the set of logical links. We define LI

to(l) as the set of
links whose transmissions cause interference to the receiver of
link l and LI

from(l) as the set of links whose transmissions
get interfered from the transmission of link l. Hence, if link
l and a link in set LI

to(l) transmit data simultaneously, the
transmission of link l fails. If link l and a link k in set LI

from(l)
transmit data simultaneously, the transmission of link k also
fails.

The EB protocol is a prototypical contention resolution
protocol in such wireless networks. In the IEEE 802.11
implementation, the EB protocol is window-based: each link
l maintains its contention window size Wl, current window
size CWl, and minimum and maximum window sizes Wmin

l

and Wmax
l . After each transmission, contention window size

and current window size are updated. If transmission is
successful, the contention window size is reduced to the
minimum window size (i.e., Wl = Wmin

l ), otherwise it is
doubled until reaching the maximum window size Wmax

l

(i.e., Wl = min{2Wl,W
max
l }). Then, current window size

CWl is updated to be a number between (0, Wl) following a
uniform distribution. It decreases in every time-slot, and when
it becomes zero, the link transmits data. Since the window
size is doubled after each transmission failure, the BE protocol
in the IEEE 802.11 is called the Binary Exponential Backoff
(BEB) protocol, which is a special case of EB protocols.

We study the window-based EB MAC protocol through a
persistence probabilistic model, an approach analogous to the
source rate model in the literature for the window-based TCP
congestion control protocol. Here each link l transmits data
with a probability pl, which we refer to as the persistence
probability of link l. After each transmission attempt, if
the transmission is successful without collisions, then link
l sets its persistence probability to be its maximum value,
pmax

l . Otherwise, it multiplicatively reduces its persistence
probability by a factor βl (0 < βl < 1) until reaching its
minimum value pmin

l .
Since in the window-based BEB protocol the current win-

dow size CWl of link l is randomly selected between (0,Wl),
when its window size is Wl, we may think that link l transmits
data in a time-slot with an attempt probability 1/Wl, which
corresponds to the persistence probability pl in our model for
the average behavior of the EB protocols. In the window-
based protocol, after every transmission success, the attempt
probability is set to be its maximum value (i.e., 1/Wmin

l ),
which corresponds to pmax

l in our model, and after every trans-
mission failure, the attempt probability is set to be a fraction of
its current value until it reaches to its minimum value, which
corresponds to reducing the persistence probability by a factor
of β = 0.5 in BEB (and in general β ∈ (0, 1) in EB) until
reaching the minimum persistence probability pmin

l .

III. REVERSE ENGINEERING: NON-COOPERATIVE GAME
MODEL OF EB MAC PROTOCOL

In this section, we characterize the selfish utility maximiza-
tion problem that is implicitly solved by random-access MAC
protocols such as EB. In contrast to the TCP/AQM protocol
that can be modeled as a basic NUM (1), we model the
EB protocol as a non-cooperative game due to the coupled
utility of each link through collisions and the lack of sufficient
feedback from the network.

A. Game Model, Utility Function, and Existence of Nash
Equilibrium

The update algorithm for the persistence probability de-
scribed in the previous section can be written as:

pl(t + 1) = max{pmin
l , pmax

l 1{Tl(t)=1}1{Cl(t)=0}
+βlpl(t)1{Tl(t)=1}1{Cl(t)=1}
+pl(t)1{Tl(t)=0}}, (2)

where pl(t) is a persistence probability of link l at time-slot
t, 1a is an indicator function of event a, and Tl(t) and Cl(t)
are the events that link l transmits data at time-slot t and that
there is a collision to link l’s transmission given that link l



transmits data at time-slot t, respectively. Then, given p(t),
we have

Prob{Tl(t) = 1|p(t)} = pl(t)

and

Prob{Cl(t) = 1|p(t)} = 1−
∏

n∈LI
to(l)

(1− pn(t)).

Since the update of the persistence probabilities for the next
time-slot depends only on the current persistence probabilities,
we will consider the update conditioning on the current
persistence probabilities. Note that pl(t) is a random process
whose transitions depend on events Tl(t) and Cl(t). We first
study its expected trajectory and will return to (2) later in
this section. Slightly abusing the notation, we still use pl(t)
to denote the expected persistence probability. From (2), we
have

pl(t + 1) = max{pmin
l , pmax

l E{1{Tl(t)=1}1{Cl(t)=0}|p(t)}
+βlE{pl(t)1{Tl(t)=1}1{Cl(t)=1}|p(t)}
+E{pl(t)1{Tl(t)=0}|p(t)}}

= max{pmin
l , pmax

l pl(t)
∏

n∈LI
to(l)

(1− pn(t))

+βlpl(t)pl(t)


1−

∏

n∈LI
to(l)

(1− pn(t))




+pl(t)(1− pl(t))}, (3)

where E{a|b} is the expected value of a given b.
We now reverse engineer the update algorithm in (3)

as a game, in which each link l updates its strategy,
i.e., its persistence probability pl, to maximize its utility
Ul based on strategies of the other links, i.e., p−l =
(p1, · · · , pl−1, pl+1, · · · , p|E|).

Formally, we formulate the EB protocol as a non-
cooperative game, GEB−MAC = [E,×l∈EAl, {Ul}l∈E ],
where E is a set of players, i.e., links, Al = {pl | pmin

l ≤ pl ≤
pmax

l } is an action set of player l, and Ul is a utility function
of player l to be determined through reverse engineering. We
refer to this as the EB-MAC Game and now study its properties
and solutions.

In the non-cooperative game, some of the most important
questions are the existence, uniqueness, and stability of its
Nash equilibrium [15]. In the case of the EB-MAC Game, we
have the following definition of Nash equilibrium.

Definition 1: A persistence probability vector p∗ is said
to be a Nash equilibrium if no link can improve its utility
by unilaterally deviating its persistence probability from Nash
equilibrium:

Ul(p∗l ,p
∗
−l) ≥ Ul(pl,p∗−l), pmin

l ≤ pl ≤ pmax
l , ∀l.

The following reverse engineering theorem, proved in Ap-
pendix VI-A, obtains the underlying utility functions in the
EB-MAC Game and establishes the existence of Nash equi-
librium for the game.
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Fig. 2. Dependence of a utility function on its own persistence probability,
for βl = 0.5, pmax

l = 0.5, and
∏

n∈LI
to

(l)
(1− pn) = 0.5.

Theorem 1: The utility function is the following expected
net reward (expected reward minus expected cost) that the link
can obtain from its transmission:

Ul(p) = R(pl)S(p)− C(pl)F (p), ∀l (4)

where S(p) = pl

∏
n∈LI

to(l)(1 − pn) is the probability of
transmission success, F (p) = pl(1−

∏
n∈LI

to(l)(1−pn)) is the

probability of transmission failure, and R(pl)
def= pl( 1

2pmax
l −

1
3pl) can be interpreted as the reward for transmission success,
C(pl)

def= 1
3 (1 − βl)p2

l can be interpreted as the cost for
transmission failure.

Furthermore, there exists a Nash equilibrium in the EB-
MAC Game GEB−MAC = [E,×l∈EAl, {Ul}l∈E ] character-
ized by the following:

p∗l =
pmax

l

∏
n∈LI

to(l)(1− p∗n)

1− βl(1−
∏

n∈LI
to(l)(1− p∗n))

, ∀l. (5)

Remark: It is important to note that the expressions of S(p)
and F (p) come directly from the definitions of success and
failure probabilities, while the expressions of R(pl) and C(pl)
(thus exact form of Ul) are in fact derived in the proof by
reverse engineering the EB protocol description. Both R(pl)
and C(pl) turn out to be quadratic functions of pl.

From (5), we conclude that, other conditions being the
same, at a Nash Equilibrium a link l will have a higher
persistence probability if it has a higher value of pmax

l , a
higher value of βl, or a higher value of

∏
n∈LI

to(l)(1 − p∗n),
i.e., a higher transmission success probability. We also have
the next corollaries that immediately follow from (3) and (5).

Corollary 1: If p(t) updated by (3) converges to p∗,
pmin < p∗ < pmax, then p∗ is a Nash equilibrium.

Corollary 2: Suppose that pmin
l > 0, ∀l, p∗l →

pmin
l as |LI

to(l)| → ∞.
Corollary 3: Suppose that pmin

l = 0, ∀l. Let |LI
to(l)| →

∞. If p∗l > 0, then only a finite number of links among
links in LI

to(l) have positive persistence probabilities at a Nash
equilibrium.



Corollaries 2 and 3 can be easily proven with (17) in
Appendix VI-A and the fact that, as the number of links
in LI

to(l) with a positive persistence probability at a Nash
equilibrium goes to infinity, p∗l in (5) goes to zero. Corollaries
2 and 3 confirm the intuition that, as the number of interfering
nodes to a link increases (i.e., as the amount of contention in
the contention region of a link gets higher), the persistence
probability of the link decreases.

B. EB Protocol and Stochastic Subgradient Method

Using (15), we can rewrite (3) as

pl(t + 1) = max
{

pmin
l , pl(t) +

∂Ul(p)
∂pl

|p=p(t)

}
.

Hence, in (3), each link updates its persistence probability to
the direction of the maximizer using the gradient. To update
its persistence probability by (3), each link l must know
the persistence probabilities of its adjacent links, i.e., link n,
n ∈ LI

to(l). However, in the EB protocol, there is no explicit
message passing among links, and the link cannot obtain the
exact information to evaluate the gradient of its utility function.
Instead of using the exact gradient of its utility function as in
(3), each link attempts to approximate it using (2). In fact, we
can rewrite (2) as

pl(t + 1) = max{pmin
l , pl(t)− pl(t) + pmax

l 1{Tl(t)=1}1{Cl(t)=0}
+βlpl(t)1{Tl(t)=1}1{Cl(t)=1} + pl(t)1{Tl(t)=0}}

= max{pmin
l , pl(t) + vl(t)},

where

vl(t) = pmax
l 1{Tl(t)=1}1{Cl(t)=0}

+βlpl(t)1{Tl(t)=1}1{Cl(t)=1}
+pl(t)1{Tl(t)=0} − pl(t).

Since

E{vl(t)|p(t)}= pmax
l pl(t)

∏

n∈LI
to(l)

(1− pn(t))

+βlpl(t)pl(t)(1−
∏

n∈LI
to(l)

(1− pn(t)))

+pl(t)(1− pl(t))− pl(t)

=
∂Ul(p)

∂pl
|p=p(t),

we conclude that vl(t) is a stochastic subgradient [6] of Ul at
p(t).

In summary, we have the following reverse engineering
result in addition to Theorem 1:

Theorem 2: The EB protocol described by (2) is a stochas-
tic subgradient algorithm to maximize utility (4).

Remark: Each stochastic subgradient vl can be measured by
the link itself through collision and success of its transmission,
without explicit message passing among links.

We now examine dynamics of (3) with a tunable step size
γ (the actual protocol is implicitly using a constant step size

of 1):

pl(t + 1) = max
{

pmin
l , pl(t) + γ

∂Ul(p)
∂pl

|p=p(t)

}
. (6)

We start with the following definition:
Definition 2: A set Rl is called a contraction region for a

dynamical system p(t+1) = f(p(t)) if there exists an integer
N such that for all initial conditions, pl(n) ∈ Rl for some n
less than N .

Although after the trajectory enters the contraction region
it may still leave, the definition guarantees that it will come
back within N steps. When strict convergence result is not
available, a contraction region characterization describes the
main region where the system stays.

Now consider the aggregate utility V =
∑

l Ul(p). It can
be shown that ∇V is Lipschitz continuous with a Lipschitz
constant that we denote as C. If p(t+1) = p(t)+γ∇V , then
clearly the system converges with proper step-size γ < 2

C . Due
to the lack of knowledge of other links’ persistence probability
and the non-cooperative nature of the game, the actual update
direction is ∂Ul(p)

∂pl
instead of the gradient ∇V . Consider the

difference between these two vectors:

∂Ul(p)
∂pl

− ∂V

∂pl
= −

∑

n∈LI
to(l)

∂Un(p)
∂pl

, ∀l. (7)

The following inequality characterizes p for which the error
is not large enough to negate the exact gradient and V still
increases after each step:

−
∑

n∈LI
to(l)

∂Un(p)
∂pl

< µ
∂Ul(p)

∂pl
(8)

where µ ∈ [0, 1) can be viewed as the relative error.
When (8) fails to hold, the following opposite inequality

holds, and leads to a contraction region characterization:

−
∑

n∈LI
to(l)

∂Un(p)
∂pl

≥ µ
∂Ul(p)

∂pl
. (9)

Theorem 3: The solution of (9) is an contraction region
for (6) with step-size γ ∈ (0, 2/C(1− µ))

The basic idea of the proof is that once p is out of the region
defined by (9), then (8) holds and V increases after each step.
As V is finite and the increments are lower-bounded, after
a finite number of steps, (8) will fail and the system will get
into the contraction region again. The detailed proof is omitted
here as it consists of a standard argument using the Descent
Lemma [2], as was done in [14] for a different problem.

C. Uniqueness of Nash Equilibrium and Convergence of Best
Response

In Theorem 1, we have shown that there exists a Nash
equilibrium in the EB-MAC game. However, in general, there
may not be a unique Nash equilibrium, as illustrated in a
simple example. Suppose that there are two links interfering
with each other, and that pmax

1 = pmax
2 = pmax = 1, then



it can be verified that there is an infinite number of Nash
equilibria, which is the set of (p∗1, p

∗
2) satisfying

max{pmin,
1− pmax

1− βpmax
} ≤ p∗1 ≤ min{1,

1− pmin

1− βpmin
}

and
p∗2 =

1− p∗1
1− βp∗1

.

We will investigate uniqueness of Nash equilibrium together
with the convergence of a natural strategy for the game:
the best response strategy, commonly used to study stability
of Nash equilibrium. In best response, each link updates
its persistence probability for the next time-slot such that it
maximizes its utility based on the persistence probabilities of
the other links in the current time-slot:

p∗l (t + 1) = argmax
pmin

l
≤pl≤pmax

l

Ul(pl,p∗−l(t)). (10)

Hence, p∗l (t + 1) is the best response of link l given p∗−l(t).
Note that, in current practice, the persistence probability in

the EB protocol is not updated by the best response strategy,
but by (2) (or by (3) on average). Hence, in the EB protocol,
instead of instantaneously setting pl(t+1) to the best response
p∗l (t + 1), in (2) (or (3)) each link updates its persistence
probability to the direction of the maximizer by using the
stochastic gradient. Hence, in the EB protocol, the persistence
probability of the link is updated more smoothly than the best
response.

Based on S-modular game theory as shown in Appendix VI-
B, the following theorem provides our first characterization of
the convergence properties of the best response strategy to a
Nash equilibrium in the EB-MAC Game.

Theorem 4: Suppose that the persistence probability of
each link is updated by the best response function in (10)
in each time-slot with p∗(0) = pmin. Then,

p∗(2t + 1) → p̂ and p∗(2t) → p̃ as t →∞.

If p̂ = p̃ i.e., if p∗(t) converges to p̂, then p̂ is a Nash
equilibrium.

Thus far, we have shown that Nash equilibrium of the EB-
MAC game may not be unique and, further, the best response
strategy may not converge to a Nash equilibrium. However,
by imposing some conditions on the strategy set of each link,
we can guarantee both the uniqueness of Nash equilibrium
and the convergence of the best response strategy to the Nash
equilibrium.

For notational simplicity, we assume all links have the same
pmax and pmin. Furthermore, assume that pmax < 1 and
pmin = 0 1. Then, from (5), we have

p∗l = pmax

∏
n∈LI

to(l)(1− p∗n)

1− β(1−∏
n∈LI

to(l)(1− p∗n))
, (11)

1If the maximum window size is sufficient large, then pmin can be
sufficient close to 0. And if we don’t allow the minimum window to be
1, which is a plausible thing to do, then the smallest minimum window is 2
and the corresponding pmax = 0.5 < 1.

where LI
to(l) is a set of links that cause interference to link l.

We first bound Nash equilibrium with the following
Lemma 1: We have p∗l > 0 and p∗l < pmax.

This lemma is proved in Appendix VI-C and guarantees that
any equilibrium must be an inner solution. We now show that
when contention density is not too high, the above solution is
actually the unique Nash equilibrium.

Let K = maxl{|LI
to(l)|}, which captures the amount of

potential contention among links. We have the following
theorem that relates three key quantities: amount of potential
contention K, backoff multiplier β (speed of backoff), and
pmax that corresponds to the minimum contention window
size (minimum amount of backoff).

Theorem 5: If pmaxK
4β(1−pmax) < 1, then

1) The Nash equilibrium is unique;
2) Start from any initial point, the iteration defined by best

response converges to the unique equilibrium.
The proof is in Appendix VI-D. The key idea is to show the

updating rule from p(t) to p(t+1) is a contraction mapping [1]
by verifying a particular norm of the Jacobian J of the update
dynamics in the game (||J||∞ in our proof) is less than one.

There are several interesting engineering implications from
the above theorem. For example, it provides a guidance to
choose parameter in the EB protocols, and quantifies the
intuition that with a large enough β (i.e., links do not decrease
the probabilities suddenly) and a small enough pmax (i.e., links
backoff aggressively enough), uniqueness and stability can be
ensured. The higher the amount of contention (i.e., a larger
value of K), the smaller pmax needs to be.

Some of the other implications are stated in the following
corollary, whose proof hinges upon the following observation.
If β ≤ 0.5, then 1−β

β(1−p) ≥ 1 for p ∈ (0, 1), and we have

||J||∞ ≤max
l
{ pmax|LI

to(l)|(1− β)
(1− β + β(1− pmax))2

}

≤ pmaxK(1− β)
(1− β + β(1− pmax))2

. (12)

Corollary 4: If any one of the following conditions is
satisfied, then the Nash equilibrium is unique. Moreover,
starting from any initial point, the iteration defined by best
response converges to the unique equilibrium.

(a) β ≤ 0.5 and pmaxK(1−β)
(1−β+β(1−pmax))2 < 1;

(b) For the system in which each link interferes each
other (i.e., LI

to(l) = E−{l}, ∀l), e.g., as in an uplink
topology, pmax(L−1)

4β(1−pmax) < 1, where L is the number of
links;

(c) For the system in which each link interferes each
other (i.e., LI

to(l) = E − {l}, ∀l), β ≤ 0.5 and
pmax(L−1)(1−β)

(1−β+β(1−pmax))2 < 1.
Remark: Part (c) of the above corollary quantifies the intu-

ition that smaller number of interfering links helps uniqueness
and stability of Nash equilibrium: L needs to be smaller than
1 + (1−β+β(1−pmax))2

pmax(1−β) .
Interpreting the above results in another way, we examine

the dependence of the maximum pmax allowed, i.e., the least
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amount of backoff needed in terms of the smallest Wmin, in
order to ensure uniqueness and stability of EB protocol, as a
function of backoff multiplier β and user density L. Using
pmax

c (β, L) to denote the critical value of pmax satisfying
the bounds, both pmax

c (β, L) developed in Corollaries 4 (b)
(pmax

c (β, L)1) and 4 (c) (pmax
c (β, L)2) are visualized in Figure

3 with the standard parameter β = 0.5. It is worthwhile to
note that as long as the minimum window size is 5 or larger,
then for the number of active links L up to 8, which is a
reasonably large number in many applications, uniqueness and
convergence can be guaranteed (because pmax

c is slightly larger
than 1/5 = 0.2 when L = 8).

We also plot pmax
c (β, L) for Corollary 4 (b) in Figure 4.

Not surprisingly, pmax
c (β, L) in an increasing function on β

and decreasing on L. Moreover, it is concave on β and convex
on L.

A natural question to ask next is whether the above up-
perbounds on pmax

l are too conservative due to relaxations
during the computation of bounds on Jacobian’s infinity norm.
The answer is no, for the contraction mapping technique used
above. An upperlimit that sets the best possible upperbound
we can achieve via contraction mapping using infinity norm
is derived by finding the lowerbound of the maximum of
||J||∞, see Appendix VI-E for details. The upperlimit is also
illustrated in Figure 3 with β = 0.5. It is clear that the
upperlimit has qualitatively the same shape as the bounds in

Corollary 4.

D. Relating Stochastic Subgradient Method with Best Re-
sponse Strategy

We have shown that the stochastic subgradient updates (2)
is how EB protocol works, and characterized a contraction
region for its expected trajectory. A different update rule, the
best response strategy (10), is the standard game-theoretic dy-
namics whose convergence characterizes the stability of Nash
equilibrium, and we have provided sufficient conditions for
its convergence. In this subsection, we develop the connection
between these two updates.

Consider the case where only link l updates its persistent
probability pl similar to (2) but with a diminishing step-size,
and other links contend for the common channel with fixed
probabilities p−l. We can show that such sequential stochastic
subgradient updates converge to the best response solution in
(10) under properly chosen step-size and mild conditions of
the system parameters.

Formally, define the new update algorithm for link l under
fixed value of p−l as:

pl (t + 1) = max
{
p̃min

l , min {pmax
l , pl (t) + αl (t) vl (t)}

}
,

(13)
where vl (t) is the stochastic subgradient defined in (6), αl (t)
is the step-size, and p̃min

l is the modified minimum persistent
probability. Assume for simplicity that all users have the same
minimum and maximum persistent probabilities 0 ≤ pmin ≤
pmax < 1, and a common backoff multiplier β. The following
result is proved in Appendix VI-F.

Theorem 6: The updates in (13) converge to the best
response solution of user l in (10) under fixed p−l with
probability 1 if the following conditions all hold:

1) The step-size α (t) satisfies α (t) ≥ 0,
∑∞

t=0 α (t) =
∞,

∑∞
t=0 α2 (t) < ∞, e.g., α(t) = 1/t.

2) The modified minimum persistent probability p̃min
l =

pmax(1−pmin)Ml

1−β(1−(1−pmin)Ml) ≥ pmin.

3) The values of pmin, pmax and β satisfy
1−β

β

(
1

(1−pmax)Ml
− 2

(1−pmin)Ml

)
≤ 1, where

Ml =
∣∣LI

to (l)
∣∣ is the number of interfering links

with link l.
Remark: Theorem 6 shows that although link l neither

knows the exact values of other links’ persistent probabilities,
nor has memory of other links’ past behaviors, the stochastic
subgradient updates can still converge to the best response
strategy, if it is sequential and use diminishing step-sizes
(condition 1 above).

We now show that conditions 2 and 3 in Theorem 6 are
very mild and almost always satisfied in practice. Both are
on system parameters: the upperbound constraint on pmin in
condition 2, and the relationship in condition 3. If pmin =
0 as assumed in Section III-C, then condition 2 always
holds, and a sufficient condition for condition 3 to hold is
2 (1− pmax)Ml ≥ 1.



To see how often conditions 2 and 3 hold in practice,
consider the system parameters specified in 802.11 standard
(e.g., [3]). For an infrared (IR) physical layer, the minimum
and maximum contention window sizes are Wmin

l = 64 and
Wmax

l = 1024, which correspond to pmin = 1/1024 and
pmax = 1/64 in our probabilistic model. In Figure 5, we
plot the minimum value of β that satisfies condition 3 as a
function of the number of interfering links Ml. It is clear
from the figure that any nonnegative value of β satisfies
condition 3 when Ml ≤ 45. For any β ≥ 0.5, condition 3
is satisfied with Ml ≤ 72, which is large enough even for
a dense network. For other physical layer specifications such
as Frequency Hopping Spread Spectrum (FHSS) and Direct
Sequence Spread Spectrum (DSSS), the minimum contention
window sizes are Wmin

l = 16 and Wmin
l = 32, respectively

[3]. The maximum contention window sizes are the same as in
the IR case. As a result, any β ≥ 0.5 satisfies condition 3 when
Ml ≤ 17 and Ml ≤ 35, for FHSS and DSSS respectively. For
all three physical layer specifications, condition 2 is satisfied
for any values of β and Ml.
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Fig. 5. The minimum value of β that satisfies condition 3 of Theorem 6 vs.
the number of interfering links Ml, for the infrared physical layer model in
802.11 [3]

IV. NUMERICAL EXAMPLES
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Fig. 6. Comparison of trajectories of pl(t) in a system with two links.
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Fig. 7. Comparison of trajectories of pl(t) in the network in Figure 1, with
pmax

l = 0.5.
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Fig. 8. Comparison of trajectories of pl(t) in the network in Figure 1, with
pmax

l = 0.8.

We present numerical results for our non-cooperative game
model for MAC protocol. In Figure 6, we consider a network
with two links. We provide the results with pmax

l = 0.5 and
pmax

l = 0.8 in the same graph, setting βl = 0.5 and pmin
l =

0.05 for both cases. We compare trajectories of the persistence
probability of link 1, p1(t), which are obtained by (3), i.e., by
gradient updates, and by (10), i.e., by best response. It can in
fact be proved that, in the two-link case, the trajectory of the
persistence probability obtained by (10) converges to a Nash
equilibrium, which is confirmed in this numerical example.
The trajectory obtained by (3) converges to the same Nash
equilibrium, but more smoothly than that obtained by (10).

In Figures 7 and 8, we consider the network in Figure
1, which has six logical links, with βl = 0.5 and pmin

l =
0.05. In these figures, we also provide trajectories obtained
by (2), i.e., by stochastic subgradient.2 In Figure 7, we set
pmax

l = 0.5. The figure shows that trajectories obtained by
(3) and (10) converge to the same equilibrium, which must
be a Nash equilibrium from Theorem 4.3 In Figure 8, we set

2Since pl(t) is a stochastic process in this case, we plot its sample path.
3Although not shown in the graph, trajectories of the persistence probabil-

ities of the other links also converge.
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different βl: pmax
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2 = 0.5, but β1 = 0.5 and β2 = 0.5 + a.

pmax
l = 0.8. The figure shows that the trajectory obtained

by (10) oscillates between two values. Indeed, as shown in
Theorem 4, in general the EB-MAC Game with the best
response strategy may not converge to a Nash equilibrium.
Furthermore, while the trajectory obtained by gradient method
(3) converges and, by Corollary 1, it indeed converges to a
Nash equilibrium, the stochastic subgradient iterations do not
converge in this example. In other simulations, we observe
that the moving average of the stochastic subgradient updates
with a diminishing step-size converges.

In Figures 9 and 10, we consider a two-link topology and
compare the attained Nash equilibrium when each link has a
different pmax

l and a different βl, respectively. In Figure 9,
we set β1 = β2 = 0.5. But link 1 has its maximum persis-
tence probability pmax

1 = 0.5 and link 2 has its maximum
persistence probability pmax

2 = 0.5 + a. In Figure 10, we set
pmax
1 = pmax

2 = 0.5. But link 1 has β1 = 0.5 and link 2
has β2 = 0.5 + a. Hence, in both figures, as the value of
a gets larger, link 2 updates its persistence probability more
aggressively than link 1. As a consequence, link 2 converges
to a higher persistence probability and link 1 to a lower
persistence probability, with the difference between the two
increasing as the value of a becomes larger. This implies that

parameter setting of a link affects not only the performance
of the corresponding link but also the performance of other
links, causing fairness issues at the Nash equilibrium.

V. CONCLUSIONS

Starting with given protocol specifications, we have reverse
engineered exponential-backoff MAC protocols as a non-
cooperative game where each link is implicitly maximiz-
ing, through a stochastic subgradient update, a quasi-concave
utility function in the form of net reward for successful
transmission. Due to the lack of proper feedback mechanisms
in the current EB protocols, such selfish, local actions are not
aligned to maximize the network-wide total utility, nor are
they guaranteed to converge even though a Nash equilibrium
for the MAC game always exists. We have also characterized
a contraction region for the stochastic subgradient method,
provided sufficient conditions (on user density and backoff
aggressiveness) that guarantee both the uniqueness of Nash
equilibrium and convergence of the best response strategy, and
developed the connection between stochastic subgradient and
best response for the EB-MAC game.

Our MAC layer reverse engineering results, together with
the recently established reverse engineering optimization mod-
els for TCP and BGP, provide an utility-optimization-based
foundation for layers 2-4 protocols. Deficiencies of existing
MAC protocols revealed through reverse engineering also
motivates forward engineering, where adequate feedback is
generated to align selfish utility maximization by each logical
link to maximize the social welfare [9].

The formulation and results in this paper can be a basis to
further study other properties of EB MAC protocols, such as
efficiency loss of the non-cooperative game compared with
social welfare maximization. Like the reverse engineering
models of TCP and BGP, there are several simplifying assump-
tions in our model, notably our focus only on the contention
resolution mechanism. A next step is to reverse engineer
carrier-sensing-based (e.g., RTS-CTS) MAC protocols (e.g.,
CSMA/CA) that consists of both contention avoidance and
collision resolution algorithms. Finally, session level stochastic
effects need to be incorporated to include the arrival statistics
of finite-duration sessions. Then MAC protocols can be an-
alyzed and designed using both stochastic stability results in
traditional queuing models and optimality results in the utility
maximization models.
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VI. APPENDIX: PROOFS

A. Theorem 1

Proof: We first obtain the utility function of each link
based on the update algorithm in (3). Assuming that there
exists an equilibrium persistence probabilities p∗, pmin <
p∗ < pmax, then we see from (3) that p∗ satisfies the
following:

p∗l = pmax
l p∗l

∏

n∈LI
to(l)

(1− p∗n)

+βlp
∗
l p
∗
l (1−

∏

n∈LI
to(l)

(1− p∗n)) + p∗l (1− p∗l ). (14)

Since each link adjusts its own persistence probability to
maximize its utility given persistence probabilities of the other
link, from (14) and the first order necessary condition, each
link l has its utility function, Ul(p), such that

∂Ul(p)
∂pl

= pmax
l pl

∏

n∈LI
to(l)

(1− pn)

+βlplpl(1−
∏

n∈LI
to(l)

(1− pn))

+pl(1− pl)− pl. (15)

Hence, the utility function of link l, Ul(p), which is unique
up to a constant offset, is obtained as

Ul(p) =
1
2
pmax

l

∏

n∈LI
to(l)

(1− pn)p2
l

+
1
3
βl(1−

∏

n∈LI
to(l)

(1− pn))p3
l −

1
3
p3

l

= p2
l

∏

n∈LI
to(l)

(1− pn)(
1
2
pmax

l − 1
3
pl)

−1
3
(1− βl)p3

l (1−
∏

n∈LI
to(l)

(1− pn))

= R(pl)S(p)− C(pl)F (p), (16)

where R(pl) = pl( 1
2pmax

l − 1
3pl), C(pl) = 1

3 (1 − βl)p2
l ,

S(p) = pl

∏
n∈LI

to(l)(1 − pn), and F (p) = pl(1 −∏
n∈LI

to(l)(1− pn).
It can be verified that utility function Ul is quasi-concave

in pl. The action set Al = {pl | pmin
l ≤ pl ≤ pmax

l } of
each link l is a nonempty compact convex subset of Euclidian
space, and the utility function Ul of each link l is continuous
and quasi-concave on Al. Hence, by Proposition 20.3 in [15],
there exists a Nash equilibrium.

Moreover, from (15), we can easily show that

∂Ul(p)
∂pl





> 0, if pl <
pmax

l

∏
n∈LI

to
(l)

(1−pn)

1−βl(1−
∏

n∈LI
to

(l)
(1−pn))

< 0, otherwise
. (17)

Hence, we can characterize Nash equilibrium for persistence
probabilities of links as

p∗l =
pmax

l

∏
n∈LI

to(l)(1− p∗n)

1− βl(1−
∏

n∈LI
to(l)(1− p∗n))

, ∀l.

B. Theorem 4

Proof: We have ∂2Ul(p)
∂pl∂pk

=





∏

n∈LI
to(l),n 6=k

(1− pn) (βlp
2
l − pmax

l pl), k ∈ LI
to(l)

0, otherwise
.

Since βl < 1 and pl ≤ pmax
l , the utility function is submod-

ular4. Moreover, the action set of a link does not depend on
the strategies of the other links. Hence, by applying Theorem
5.1 in [18], the proof is completed.

4If Ul is twice differentiable and ∂2Ul(p)
∂pl∂pk

≤ 0,∀p ∈ ×l∈LAl ∀k 6= l,
then Ul is submodular. We refer readers to [17], [18] for more details on
submodularity.



C. Lemma 1
Proof:

∏
i∈LI

to(l)(1 − p∗i ) ≤ 1. It is easy to check p∗l
achieves its maximal pmax when

∏
i∈LI

to(l)(1 − p∗i ) = 1.
Therefore p∗l ≤ pmax.

If p∗l = 0, then p∗i = 1 for some i ∈ LI
to(l). That is

impossible as we know p∗i ≤ pmax < 1. Hence p∗l > 0.
If p∗l = pmax, then

∏
i∈LI

to(l)(1 − p∗i ) = 1. That is again
impossible as p∗i > 0. Hence p∗l < pmax.

D. Theorem 5
Proof: The best response updating rule is defined as

following:

pl(t + 1) = pmax

∏
i∈LI

to(l)(1− pi(t))

1− β(1−∏
i∈LI

to(l)(1− pi(t)))
. (18)

Its equilibrium is characterized by (11). We now set up
uniqueness and convergence together by showing (18) is a
contraction mapping. We first cite the following basic theorem
[1] that we will use.

Contraction Mapping Theorem. Let M be a complete metric
space and f : M → M a mapping. Assume there is a constant
k, where 0 ≤ k < 1, such that d(f(u), f(v)) ≤ kd(u, v), for
all u, v ∈ M ; such an f is called a contraction. Then f has
a unique fixed point; that is, there exists a unique u∗ ∈ M .
Furthermore, the sequence u(t + 1) = f(u(t)) converges to
the unique fixed point.

Let M be the Euclidean space and consider any vector
norm. Let d(.) be the induced distance function by the vector
norm. We have

d(f(u), f(v)) = ||f(u)− f(v)||
≤ ||∂f

∂x
||||(u− v)||

= ||∂f

∂x
||d(u, v). (19)

The matrix norm used here is induced by the vector norm
too. The inequality follows from the property of matrix norm.
Hence it is clear that if we have the Jocobian ||∂f

∂x || < 1 − ε
everywhere for some positive ε, we can let k = 1− ε < 1 and
the Contraction Mapping Theorem applies. 5

We now derive conditions using ||.||∞ for (18) to be a
contraction map. Its Jacobian J is defined by

Jlj =
∂pl(t + 1)

∂pj(t)
.

It is straightforward to check

Jlj =





0, j 6∈ LI
to(l)

−pmax
(1−β)

∏
i∈LI

to
(l),i 6=j

(1−pi)

(1−β(1−
∏

i∈LI
to

(l)
(1−pi)))2

, j ∈ LI
to(l)

.(20)

It then follows that

||J||∞ = max
l
{pmax

∑

j∈LI
to(l)

(1− β)
∏

i∈LI
to(l),i6=j(1− pi)

(1− β(1−∏
i∈LI

to(l)(1− pi)))2
}.

5As ε can be arbitrarily small, the later derivation will use 1 instead.

For any j ∈ LI
to(l), define

π(l, j) =
∏

i∈LI
to(l),i 6=j

(1− pi)

and

M(l, j) =
(1− β)

∏
i∈LI

to(l),i6=j(1− pi)

(1− β(1− (1− pj)
∏

i∈LI
to(l),i 6=j(1− pi)))2

.

We have

M(l, j) =
(1− β)π(l, j)

(1− β(1− (1− pj)π(l, j)))2

and

dM(l, j)
dπ(l, j)

=
(1− β)(1− β − βπ(l, j)(1− pj))

(1− β(1− (1− pj)π(l, j)))3
.

It then follows that, if 1−β
β(1−pj)

≤ 1, M(l, j) achieves its
maximum value of 1

4β(1−pj)
when π(l, j) = 1−β

β(1−pj)
, i.e.,∏

i∈LI
to(l)(1 − pi) = 1−β

β . If 1−β
β(1−pj)

≥ 1, M(l, j) reaches
its maximum value of 1−β

(1−β+β(1−pj))2
when π(l, j) = 1.6

Therefore, we conclude that

||J||∞ = max
l
{pmax

∑

j∈LI
to(l)

M(l, j)}

≤max
l
{ pmax|LI

to(l)|
4β(1− pmax)

}

≤ pmaxK

4β(1− pmax)
. (21)

By assumption in the theorem, we conclude ||J ||∞ < 1.
Hence, (18) is a contraction mapping and both uniqueness
and global convergence are guaranteed [1].

E. Derivation of the upperlimit

We now show the upperbound of pmax cannot be made
independent of L via above method, by deriving an upperlimit
considering the system in which each link interfere each other
(i.e., LI

to(l) = E−{l}, ∀l) that takes into account the relation
among M(l, j) for different j, which has been neglected in
previous derivation. We have

||J||∞ = pmax
∑

j 6=l

(1− β)
∏

i 6=l,j(1− pi)
(1− β(1−∏

i 6=l(1− pi)))2
.

Let yi = 1− pi, then

||J||∞ = pmax(1− β)
∑

j 6=l

∏
i6=l,j yi

(1− β(1−∏
i 6=l yi))2

.

We are interested in finding its maximum with constraint yi ∈
[1 − pmax, 1], it is at least as big as the the maximum of
V (y) = pmax(1− β) (L−1)yL−2

(1−β+βyL−1)2
, where y ∈ [1− pmax, 1].

6It is interesting to note that for standard parameter setting β = 0.5,
1−β

β(1−pj)
≥ 1 always holds.



dV (y)
dy

= pmax(1− β)
(1− β + βyL−1)(L− 1)(L− 2)yL−3

(1− β + βyL−1)3

− 2β(L− 1)2y2L−4

(1− β + βyL−1)3
(22)

Solving the optimality condition dV (y)
dy = 0 gives the critical

value

yc =
(

(1− β)(L− 2)
βL

) 1
L−1

.

Therefore, if yc < 1 − pmax, max(V (y)) = V (1 − pmax);
if yc > 1,7max(V (y)) = V (1); otherwise, max(V (y)) =
V (yc). Imposing max(V (y)) < 1, we achieve the limit
for upperbound for pmax via using contraction mapping and
infinity norm.

Notice that to derive various upperbounds on pmax
l allowed,

we bound max{||J||} < M and then impose conditions for
M < 1, whereas to derive an upperlimit on how good such
upperbounds can be, we find max{||J||} > M ′ and then
impose conditions for M ′ < 1.

F. Theorem 6

Proof: The proof relies on Theorem 6.2 in [4], a variation
of which is stated below.

Stochastic Subgradient Convergence Theorem. Consider the
maximization of a concave continuous one-dimensional func-
tion F (x) in x ∈ [a, b] , and let X∗ be a set of optimal solu-
tions. Consider the following stochastic subgradient projection
method:

x (t + 1) = max {a, min {b, x (t) + s (t) ξ (t)}} , t = 0, 1, ... (23)

F (x∗)−F (x (t)) ≤ E {ξ (t) |x (0) , · · · , x (t)} (x∗ − x (t))+γ0 (t) ,
(24)

where γ0 (t) may depend on (x (0) , · · · , x (t)) , x∗ ∈ X∗,
and s (t) is the step size that satisfies

s (t) ≥ 0,

∞∑
t=0

s (t) = ∞,

∞∑
t=0

E
{
s (t) |γ0 (t)|+ s2 (t) |ξ (t)|2

}
< ∞.

(25)
Then limx (t) ∈ X∗ with probability 1.

For our proof, we map the elements of the updates in (13)
into the elements of the algorithm in (23,24,25). Define

preflex
l = pmax

Πn∈LI
to(l) (1− pn)

2
(
1− β

(
1−Πn∈LI

to(l) (1− pn)
)) .

It can be verified that Ul(pl) is strictly concave in pl ∈[
preflex

l , pmax
]

for fixed p−l. Also the unique maximizer of

Ul (pl) is pBR
l = 2preflex

l . It can be further shown that under
conditions 2 and 3 in the theorem, p̃min

l satisfies

max
{

pmin, preflex
l

}
≤ p̃min

l ≤ pBR
l ≤ pmax

for any feasible value pn, n ∈ LI
to(l)). These enable us to

establish the following mappings: pl → x, Ul (pl) → F (x),

7This can only happen if β < L−2
2L−2

, and cannot happen with β = 0.5.

[
p̃min

l , pmax
] → [a, b] and

{
pBR

l

} → X∗. Here pBR
l is the

best response solution as in (10).
Now we map vl (t) into ξ (t) . Since

E {vl (t) |pl (0) , · · · , pl (t)} = E {vl (t) |pl (t)} =
∂Ul (pl)

∂pl

∣∣∣∣
pl=pl(t)

,

inequality (24) is satisfied with γ0 (t) = 0. Finally, (25)
is satisfied under condition 1 and the fact that |vl (t)|2 ≤
(pmax)2 . All the conditions of the Stochastic Subgradient
Convergence Theorem are satisfied, and pl (t) converges to
the best response solution with probability 1.


